
1 
 

MONITORING COASTAL AND WETLAND BIODIVERSITY FROM SPACE 

NAS DS RFI#2 Response / Earth System Science theme III: Marine and Terrestrial 

Ecosystems and Natural Resource Management 
 

1. Description of the Science and Applications Target: Addressing the increasing 

impact of humans on the environment and climate is one of the grand challenges of 

our time.  This includes deriving actionable knowledge to conserve and guide the 

sustainable use of resources from wetlands, coastal and marine aquatic habitats, 

and ice-edge environments around the world. Developing such knowledge to 

promote well-planned, healthy, and resilient coastal communities around the globe 

requires advanced, space-based observation technologies. 

 

This grand challenge requires a focus on this science question: 

How do the diversity and resilience of coastal ecosystems that span solid (terrestrial and 

ice) to aquatic habitats change under present and future environmental conditions, what 

is driving this change, and how do we use knowledge about how they operate to sustain 

the services they provide? 

 

Water and life - no two features more completely define planet Earth, and no two are 

more inextricably intertwined. Biology thrives where water and a solid boundary, like 

land or ice, come together. The coastal zone includes marine environments, saline, 

brackish and freshwater marshes, peatlands, mangroves, seagrass beds, coral reefs, 

floodplains and shorelines of rivers, estuaries and lakes, as well as human-made habitats 

like wastewater treatment ponds, urban and industrial coastlines, and aquaculture 

facilities. Ice edges are critical habitats that sustain marine ecosystems of the Arctic and 

around Antarctica. Combined, these coastal zones encompass less than 10% of the 

Earth’s surface (Fig. 1), yet over 70% of the human population lives near a coast, lake, 

estuary, or wetland. These ecosystems change over time scales of hours and days, and 

show differences over distances of tens of meters to kilometers. It is impossible to 

observe all coastal zones of the world at these scales all the time. Here we argue that we 

need to observe several hundred of these ecosystems around the world at relatively high 

spectral resolution (5-15 nm VIS and SWIR), temporal scales (days), and spatial 

resolution (30-60 m) to characterize the interactions between terrestrial, ice habitats, and 

adjacent aquatic habitats (Fig. 2), in order to monitor and understand their biodiversity, 

health, value, trends, and causes underlying changes. We state why this is important and 

outline the requirements for collecting such time-series of observations around the world. 

Coastal zones host the most significant and diverse bacterial, algal, plant and 

animal populations on the planet. Indeed, the benefits that we derive from boundary 

ecosystems are intimately tied to the diversity of life and to the underlying diversity in 

habitats of these ecosystems. The economic, environmental and social benefits of coastal 

zones are estimated at $US 56 trillion [MEA, 2005; Keddy 2010; Barbier et al. 2011; 

Costanza et al. 2014]. Yet biodiversity losses from the coastal zone are among the highest 

in the world [Dudgeon et al. 2006, Waycott et al. 2009, Vorosmarty et al. 2010]. 

Globally, since the start of the 20
th

 century, freshwater species have declined by 76% 

[WWF 2014], and perhaps 71% of wetlands have been lost along with half of the world’s 

coral reefs [Davidson, 2014; De’ath et al. 2012, WWF 2014]. By 2025, the world’s 
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human population will have grown by one more billion, with coastal areas showing the 

highest rates. The risk is “high” that over 70% of humanity will lose more resources such 

as good water and fish from coastal zones and wetlands [World Economic Forum 2015]. 

In this sense, an important “Quantified Earth Science Objective” (QESO; NRC 

2015) is the change in the functional biodiversity of coastal and wetland ecosystems, from 

canopy to benthos. Changes in biodiversity are intimately tied to changes in phenology and 

in biogeochemical cycles, reflecting underlying environmental influences. At this time we 

don’t have science-quality multidimensional remote sensing time series of observations of 

any of the globe’s coastal ecosystems. Quantifying biodiversity and the underlying 

processes that affect it at this scale is difficult because the geography, climatic conditions, 

and chemical and physical characteristics, including the substrate and the amount and 

flow of fresh or salt water in coastal zones, all show high temporal and spatial variability. 

This variability defines resilience in coastal habitats [Vega-Rodriguez et al. 2015; 

Isbell et al. 2015]. Many species have evolved complex life cycles to take advantage of 

favorable conditions at different times of the year. Phenology, the timing of change in the 

physical expression and activity of life, is among the most sensitive biological indicators of 

environmental change and ecosystem function [Chen 2011; Thackeray et al. 2011]. 

Common phenology measures are the timing of vegetation leaf-out, flower blooming, 

butterfly emergence, and bird migration [Liu et al. 2015; Jeong et al. 2013; Parmesan, 

2007]. In aquatic environments, phenology includes the timing and duration of changes in 

the abundance and community composition of phytoplankton and other microorganisms 

(including cyanobacteria and other harmful organisms), and in the diversity and 

abundance of aquatic plants [Edwards and Richardson 2004; Winder and Schindler 2004]. 

These are indicators of bad or good water quality that sustains fish and other animals. 

Remote sensing provides the observations needed to understand the rapid changes 

observed in coastal wetland and aquatic communities, in water quality, and the impacts of 

flooding over different geographic areas. Eklundh et al. [2011] used field tower 

observations to show that the color of Nordic wetlands can change significantly over just 

a week. Tzortziou et al. [2011] highlighted the consistent impact of wetlands on estuarine 

optical properties during semi-diurnal tidal exchanges of humic organic matter. Kudela et 

al. [2015] used field hyperspectral observations to show that phytoplankton blooms can 

be displaced by toxic cyanobacteria in a few days in Pinto Lake, CA. Hestir et al. [2015] 

documented rapid changes in cyanobacteria in lakes in Italy (Fig. 3). Chen et al. [2010] 

observed phytoplankton blooms that evolve over 2-3 day periods in Tampa Bay. Dierssen 

et al. [2015] concluded that monthly measurements are insufficient to quantify episodic 

plankton blooms in Long Island Sound. Ouyang et al. [2013] detected an invasive 

wetland species measuring phenology of different organisms with spectroscopy.  

The science that will generate the understanding of how these biological 

communities change in the coastal zone requires mapping of the changing physical 

expression (phenology) of different primary producers over large areas and across a 

range of specific habitats in different geographic domains. This requires 

spectroscopy (hyperspectral observations), at a spatial resolution sufficient to resolve 

the strongly inhomogeneous features that characterize boundary ecosystems and 

consistent with long-term Landsat observations, and at weekly or better time 

resolution [Zhang et al. 2003; Buermann et al. 2014; Becker et al. 2007]. Also 
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required is a new paradigm for transferring products to applications, including 

informing management of the status and impacts of uses of resources by humans. 
 

2. Geophysical Measurements for the Coastal Zone: Changes in the composition and 

quantity of living and non-living material in the water column and shallow communities 

(benthos) are directly observable, and can be studied by: 

 Measuring the concentration and quality of optically-active constituents in the water 

column (phytoplankton, suspended and colored dissolved materials); 

 Differentiating between diverse phytoplankton functional groups, detritus, and colored 

dissolved organic matter (CDOM); 

 Separating constituents in mixed patches of land and water; 

 Characterizing the composition of shallow habitats, including corals and seagrasses; 

 Characterizing inundation of wetlands; 

 Characterizing the impact of episodic events such as storms on aquatic habitats; 

 Differentiating between events and disturbance occurring over weeks to months. 

The relationship between the health of different coastal communities, changes in land cover 

phenology, and water quality can be studied using remote sensing by characterizing: 

 Relationships, including optical and ecological interdependencies, between wetland 

phenology, water quality, and nutrient and carbon fluxes; 

 Spatial distribution and composition of wetland vegetation; 

 Pathways of connectivity including lateral transport between habitats; 

 Biodiversity by discriminating among phenology traits of organisms. 

 The effect of inundation on canopy health and community zonation; 

 Natural and human disturbance factors, including invasive or introduced species. 

 

The concentration and type of atmospheric constituents (aerosols and trace gases such as 

Ozone, NO2, SO2, etc.) to which land and water environments are exposed to also have 

important impacts on organisms [Boucher, 2015]. These need to be addressed by: 

 Comparing aerosol type and composition across marine and land environments; 

 Characterizing temporal variations in aerosol type and vertical distribution; 

 Characterizing spatiotemporal dynamics in atmospheric trace gases; 

 Defining the causes of these changes; 

 Testing linkages between these parameters and vegetation health and water quality. 

This basic science doesn’t require continuous global coverage (Fig. 3). Global 

mapping requirements invariably lead to satellite missions with temporal, spectral, and 

spatial resolution combinations unsuited to quantify phenology in coastal habitats. The 

Landsat satellites, for example, have provided nearly four decades of land observations at 

30 m resolution, revolutionizing our understanding of global environmental change. Yet, 

the few and broad Landsat multispectral bands, low signal-to-noise ratio for various aquatic 

signals, and 16-day repeat cycle are not enough to observe biodiversity changes in coastal 

zones. Other land-observing missions have similar temporal or worse radiometric 

limitations. The European Space Agency’s Sentinel 2 land imaging missions will provide 5 

day repeat coverage, yet these broad-band multispectral data cannot resolve the diversity of 

biological signatures in the land and water. Ocean sensors such as the MEdium Resolution 
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Imaging Spectrometer (MERIS), the Ocean and Land Colour Instrument (OLCI), and the 

planned PACE mission are designed to make frequent observations with high quality 

spectral measurements but cannot effectively resolve spatially complex coastal zones 

because of their large pixel size (>300 m at nadir). None of the past, current, or planned 

sensors have the combination of capabilities required to monitor many key characteristics 

of coastal wetland, estuarine, and inland aquatic ecosystems. 

To capture the primary relationships between adjacent habitats, several hundred 

different land-water and ice-water ecosystems around the world, including coastal urban 

environments, should be sampled over areas >25x25 km
2
 with the following requirements. 

3. Data Characteristics and Quality Requirements: 

Temporal resolution: Detecting changes in phenology and water quality in terrestrial 

and aquatic coastal habitats requires 1-2 observations per week or more (Figs. 2 and 4; 

Table 1). Assimilating such products into hydrodynamic/water quality models improves 

skill to enhance nowcasting and forecasting activities for informed decision-making and 

mitigation activities (Pahlevan et al. 2012). 

 

Spectral resolution: The spectral signatures of constituents like phytoplankton, other 
particulate matter, dissolved colored materials, bottom reflectance, and land cover, are all 

confounded in multispectral and in coarse spatial resolution data [Ampe et al., 2014; 2015; 
IOCCG 2000; Dekker et al. 2011; Hestir et al. 2008; Goodman et al. 2013]. For the coastal 
zone, spectral measurements are needed that will permit identification of and separation 

between living and non-living elements. For example, different phytoplankton pigments 
have key spectral absorption features. Chlorophyll-a absorbs strongly between 435–438 
nm, and at 660 nm. Cyanobacteria show absorption features between 490-625 nm. Floating 

algae have spectral features in the 550-900 nm range. CDOM absorbs strongly in the UV 
and blue with an exponential decrease in absorption at higher wavelengths. Phytoplankton 
chlorophyll-a shows a fluorescence peak at 685 nm, but the apparent peak in reflectance 

shifts between 666–707 nm with the concentration of phytoplankton, suspended sediments, 
reflectance of a shallow bottom, and the absorption of light by oxygen (absorption band B) 
in the atmosphere. Similarly, Mesodinium rubrum contains the pigment phycoerythrin, 

which fluoresces in the yellow (peak at 565–570 nm) [Dierssen et al. 2015]. The 
fluorescence features allow detection of different organisms even in the presence of CDOM 
[Hu et al. 2005]. These quantities allow evaluation of other processes, such as production 

and calcification in coral reefs [Hochberg and Atkinson 2008]. Such measurements need to 
be made across the visible and near infrared regions of the spectrum, from at least 350-885 
nm, with a high spectral resolution (~2-5nm). Additional information is required from the 

SWIR (e.g., SWIR: 1240 ± 12.5 nm and 2125 ± 25 nm) and UV-blue for atmospheric 
correction [Wang et al. 2012; Tzortziou et al. 2014; IOCCG 2010]. Thermal information 
should be available at similar spatial and temporal resolution as temperature is a first order 

determinant of plankton population (e.g. Sunagawa et al., 2015). 
Full spectral information is needed to implement advanced algorithmic approaches 

that provide better, more detailed information about coastal biodiversity, including spectral 

matching and optimization algorithms. These also provide more flexible and accurate 

estimates of the concentration of chlorophyll-a and other pigments, biomass, physiological 

state of algae or vegetation, other inherent or apparent optical properties, and functional 
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group detection [Kudela et al. 2015; Gitelson et al. 2011; Odermatt et al. 2012; Dekker et 

al. 2011; Goodman and Ustin 2007; Mobley et al. 2005; Kutser et al. 2006; Lee et al. 

1998, 1999; Uitz et al. 2010; Mouw et al. 2012; Brotas et al. 2013; Hu et al. 2003; Hu et al. 

2005; Dierssen et al. 2015; Behrenfeld et al. 2009].  

 Wetland and aquatic vegetation characteristics can be measured using spectral 
reflectance [Santos et al., 2012; Turpie 2012; Tiner et al. 2015; Hestir et al. 2012; Hestir et. 

al. 2015]. Observations of these spectra in time allows for quantification of vegetation type 
and health [Ouyang et al. 2012]. Several approaches help to interpret the mixed spectral 
signatures generated by different surfaces occupying a fraction of each pixel [Keshava and 

Mustard 2002; Plaza et al. 2010; Kruse et al. 1993; Roberts et al. 1998; Fernández-Manso 
et al. 2012; Bell et al. 2015]. Spectral data also provide estimates of the concentration of 
nitrogen and other vegetation biochemical constituents, including lignin and cellulose 

[Smith et al. 2003; Anderson et al. 2011]. The mission would help build spectral libraries 
for coastal terrestrial and aquatic environments [see Zomer et al. 2008; Santos et al. 2012]. 

Spatial resolution and spatial scope: A spatial resolution of the order of 30 m per pixel 

is required to assess land cover and coastal zone habitats over a range of geographic scales 
[Tiner et al. 2015; Hestir et al. 2015]. Coarser spatial resolution leads to significant 
spectral and spatial mixing and ambiguous and hard to interpret observations of coastal 

water and wetland types [Hestir et al. 2015; Turpie et al. 2015]. A spatial resolution of ~30 
m has been recommended for oil spill detection and monitoring in coastal waters and 
understanding their impacts on coastal wetlands and biodiversity [Brekke and Solberg, 

2005]. Such spatial resolution resolves the heterogeneity in ocean color and suspended 
materials in river plumes [Aurin et al 2013]. It would be sufficient for capturing ocean 
color variability in 90% of the surface area of the world’s lakes [Verpoorter et al. 2014]. It 

also is required to capture the strong gradients (e.g., factors >5 change) in CDOM caused 
by tidal exchanges at the wetland-estuary interface [Tzortziou et al. 2011]. Furthermore, 
30 m resolution data products allow for many more valid observations at the proximity of 

ice-edges in the climate sensitive Polar regions (Bélanger et al. 2007). 

Additional requirements: The observations should be calibrated pre- and post-launch to 
enable ocean color-quality science [IOCCG, 2013], including using the moon [Stone and 

Kieffer, 2006]. The signal-to-noise (SNR) requirement should be equivalent to those set for 
PACE [PACE SDT, 2012] at PACE bandwidths but at 30-60 m resolution. A rigorous 
strategy for sun glint avoidance or to observe sunglint (e.g. detection of oil) is required. 

4. Affordability of the required measurements in the decadal timeframe: The mission 

design described above should provide as a minimum ocean-color radiometric quality 

spectral data (VIS: 340-904 nm at <5 nm resolution; 1240 and 2125 nm at 12.5 nm and 25 

nm width, respectively), at high temporal resolution (every 3 days or less), at medium (30 

m) spatial resolution, observations for several hundred targets around the world, from the 

tropics to the poles, over areas of at least 25x25 km
2
. Such a mission can be assembled 

from present TRL 6, 7, and above elements to operate for a period of 5-6 y. 

 These measurements would be responsive to NASA Earth science goals to detect 

changes in ecological and chemical cycles and biodiversity, enable better assessment of 

water quality and quantity, and would provide other societal benefits [NASA Science 

Plan 2014]. They would represent a revolution in coastal management applications. 
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Figure 1: Global distribution of the world’s boundary zones between land and 
water. Data Sources: Millennium Ecosystem Assessment & FAO-UN. 
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Figure 2. Types of coastal, wetland, and boundary habitats (including high latitude 
sea-ice environments) that host most of the enormous biodiversity on Earth and 
provide critical ecosystems services. The letters refer to the individual types of 
habitats listed in Table 1 and samples as in Figure 4 [Figure from Muller-Karger et 
al., in preparation, 2016 – not for reproduction]. 
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Figure 3. Cyanobacteria concentrations in Upper Mantua Lake (Italy) change 
rapidly over a few days. TOP: in situ measurements conducted near-daily with a 
hyperspectral hand-held sensor were used to identify the organism. MIDDLE: Blue 
symbols show the temporal variability that measurements collected every 3 days 
would detect at five times the Landsat frequency. BOTTOM: the frequency of 
sampling of a Landsat sensor (16 days) would alias changes in the concentration of 
phytoplankton, sediment load, and other water quality factors [after Hestir et al. 
2015]. [Figure from Muller-Karger et al., in preparation, 2016 – not for 
reproduction] 
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Figure 4. Sample (mock) target acquisition of approximately 160 coastal, wetland, 
and other boundary environments, accounting for acquisitions changing from 
northern to southern high latitudes due to illumination. The targets correspond to 
those shown in Figure 2 and Table 1. [Figure from Muller-Karger et al., in 
preparation, 2016 – not for reproduction] 
 
 
 
Table 1. Sample monthly target acquisitions for locations shown in Figure 4. Letters 
associated with each target type correspond to the habitats shown in Figure 2. 
[Table from Muller-Karger et al., in preparation, 2016 – not for reproduction] 
 

 
 
 


